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Statistical approach to nonhyperbolic chaotic systems
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Spectral properties of the evolution operator for probability densities are obtained for unimodal maps for
which all periodic orbits are unstable, and the Lyapunov exponent calculated from the first iterate of the critical
point converges to a positive constant. The method is applied to the logistic map both for parameter values at
which finite Markov partitions can be found as well as for more typical parameter values. A universal behavior
is found for the spectral gap in the period-doubling inverse cascade of chaotic band-merging bifurcations. Full
agreement with numerical simulation is obtaing81063-651X96)07009-2
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. INTRODUCTION tion of the evolution operatop.
The chief difficulty posed by the logistic map and several
The importance of the period-doubling route to chaos isother experimentally obtained first-return maps is due to the
by now well established in such diverse fields as fluid dy'existence of a quadratic extremum. The Correspondﬁmg
namics, optics, chemistry, and biolofl+5]. In this context,  when applied recursively on initially analytic functions, pro-
a most remarkable feature is that one-dimensional discretgyces singularities at all the iterates of the extremum. A
time dynamics governed by a unimodal mapping is oftefmethod of treating these singularities is vital to any under-
observed when return maps are constructed from experimestanding of the statistical behavior of the system. Fortu-
tal time series pertaining to a single variable, or from mathnately, these singularities are integrable if the Lyapunov ex-
ematical models of multivariate continuous-time dynamicalponent, when evaluated from the first iterate of the
systemg6]. As a result, many qualitative and even quantita-extremum, converges to a positive constant. The first objec-
tive features of wide classes of systems can be capturege of this paper is the creation of basis sets of orthogonal
through the analysis of simple dynamical systems, such agnctions capable of handling such singularities, as exposed
the logistic map. in Sec. II. This then permits one to obtain a matrix represen-

The properties of unimodal maps in the range in whichiaiian 1) of P, which, typically, can be truncated when all

stable periodic orbits exist and no chaos is present is by NoOWeiqic orbits are unstable. The eigenvectors and eigenval-
a practically solved problem. On the other hand, the behaviofeq of)) define, through the basis, a class of eigenfunctions
of such systems after the onset of chaos, where one observe

S . 2 .
(with the exception of periodic windowstochasticlike mo- and elgenvalue_s ofP. One can thu_s calculg’Fe time-
.correlation functions, spectra, and invariant densities. In Sec.

tion is less understood despite intense investigations. It NI, the procedure will finally be illustrated on a few repre-
widely recognized that in this range the most appropriate_’

method of description is the statistical one, based on thgentaﬂve examples. In Sec. 1V, we obtain a universal for-

evolution equation for probability densities known as thernula for the spectral gap as a function of the control param-

. ) . eter. This relation allows one to predict how quickly time
Frobenius-Perron equation. The problem is thus reduced to . X . .
L . . . correlation functions decay to their asymptotic values as the
finding a workable representation of the probability density X
) . . “onset of chaos is approached from above.
in terms of the spectral properties of the corresponding

Frobenius-Perron operatd®. A number of results in this
direction have been reported essentially for hyperbolic maps Il. MATRIX REPRESENTATION

and, especially, for piecewise linear mdds7—9. For such OF THE FROBENIUS-PERRON OPERATOR
systems, the&-function formalism has also been widely used A. The Frobenius-Perron operator and correlation functions
to obtain decay rates of time correlation functions. Much less
understood, both as far as the Frobenius-Perron operator a
the ¢-function formalism are concerned, is the behavior of ~ ™~ ~. X
nonhyperbolic chaotic systems, which include the importan{OgIStIC map,f_r(x):rx(l—x), yvherem the cor;trpl param-
class of unimodal maps, and in particular the logistic map inete”ZO' As is well known, this example exhibits cha_os at
the chaotic regime. Our objective in the present paper is ty2lués of r=r.=3.5699l... . The corresponding
show that the statistical behavior of such systems, includinifmber"'JS'F’erron operatéis defined through the equation
invariant densities, time-correlation functions, and decay10

rates can be evaluated through an explicit matrix representa-

d Let us consider a one-dimensional dynamical system on
the unit interval, X, =f(x), an example of which is the

. [f21(%)]
pre 1) =Pp ()= L

= TR 01) W

*Present address: Department of Fundamental and Experimental
Physics, Universidad de La Laguna, 38203 La Laguna, Spain wheref;l(x) denotes the local inverse branchesfolt is
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understood that if , *(x) is not defined for a point, which C. The orthogonal basis

happens when a given trajectory is not physically realizable, The method we propose uses a special basis of orthogonal
then the corresponding term in the sum EQ.is set equalto  fynctions of the type

zero at this point. The Frobenius-Perron operator is useful

not only in that it evolves probability densities, but also be- Dim(X) =S;(X) Tl 7:1(X) 1xi(X), (5)
cause it can be used to evaluate time-correlation functions, . . _
provided that one knows the asymptotic state of the systerwhere {T,(2)}, n=0,1,2, ... is any basis of polynomial

[typically the invariant density.{x)]. The time-correlation ~functions(such as the Chebyshev polynomials, for example
function Cag(7) of two measurable function#é\(x) and  [13]) with support on the unit interval and orthogonal with
B(x) (also referred to as observablessually calculated respect to a weighting function(z),

from a long time series data, can thus be alternatively given

in terms of[11] jldz W2 T(2)Th(2) = Ymbmn- (6)
0

1 ~
Cas( T)If A(X)[P"(Bpeg 1(X)dX—(A)eB)ee (20 xi(x) is the characteristic function of the c€l} (i.e., equals
0 one if xe C; and zero otherwige The functionss;(x) are

) ) chosen in such a way that the basis functions(Bghave the
Clearly, a knowledge of the properties Bfwhen acting on  same type of square root singularities as the evolved prob-

functions of the typeB(x)pe(x) is sufficient to calculate  gpjjity densitites(4). An example of such a function is given

time-correlation functions. by
B. Formation of singularities in nonhyperbolic maps (x) 1 @
Si(X)= ,
Before proceeding to the study of the spectral properties ' m(X—a;_1)(a;—X)

of the Frobenius-Perron operator, we first discuss the forma- . o

tion of singularities wherP is applied successively on a Where the factor (f) is adopted for normalization.
smooth initial probability densityo(x). We suppose that the N our method, the functions;(x) in Eqg. (5) are related
map f(x) has a single quadratic critical poirg, such that to the functhnssi(x) _by the following argument. We assume
£(x)=0, f"(x.) %0 [with the notationf’ (x)=df/dx]. For that the basis function&) also obey an orthogonality rela-
the logistic map, the critical point is located ag=1/2. ton

Let us denote the iterates of the critical point 1

f(XC),f[f(Xc)], e aij:(Xc)v_- s by the Set{xct}1 with ) f dx VV(X)¢im(X)¢jn(X): 7m5mn5ij ' (8)
t=0,1,2,..., andconsider first the case where they are fi- 0

nite in number N.+ 1). This happens when the critical point . I —~
falls in a finite number of iterations onto a periodic orbit. We V_V'thNC Lespect to an_other welghtlr?g factor,\./v(.g)
observe that the probability densiBfp, develops an extra — 2i~1Wi(X)xi(x), than in Eq.(6). Inserting the definition
new singularity at each iteration until the last point of the (5) of the basis functions in Ed8), we deduce the relation
periodic orbit is finally visited afteN. iterations. Because a

the (_:ritical point is quadratic and p_rovided that the relative J dx W(X)[si0) 12Tl 71 OO TTal 71(X) 1= YinOrmn-
stability factor of the sequence, defined by -1

9
NC
A= H If'(xe0)|>1, (3)  After the change of variable= 7;(x), we recover the previ-
t=0 ous orthogonality relatio6) under the conditions
is greater than 1, we can conclude that all these singularities ni(ai-1)=0, n(a)=1, (10
are of square root type. More generally, the evolved prob-
ability density behaves as si(x)=n{(x), (11
. - ~ W[ 7i(X)]
Plpo= 2, arn(t)|x—xed "7, @ 0= 12
n=0 1

for xe C;. We assumed here that the conditioiid) and
(12) are satisfied separately, which is specific to our method.
The conditiong10)—(12) allow us to determine the functions
7i(X). The particular choic€7) of s;(x) yields

on one side or the other of the poirts.}.

For convenience, let us reorder the §et;} according to
increasing values and denote the new se{éq}/iNjO. The set
can be used to partition the inter\,{aio,aNC] into N, cells
Ci=[aj_1,a;] with i=1,2,... ,N.. In the literature, this 2 [Xx—ajg
partition is often referred to as the minimal Markov partition 7i(X)= aresimy/ = ' (13
[12]. To simplify the discussion without loss of generality,
we shall only consider the nontransient dynamics, which isvhich completes the construction of our basis. Since our
restricted to the intervdlag,ay_]. basis functions are tailored to the intrinsic square-root type
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singularities of the system, exhibited either by probability The Bernoulli polynomialgB,,(y/2)} [16] are eigenfunc-
densities or their derivativelsee Eq.(4)], we obtain rapid tions of the tent map with corresponding eigenvalues
convergence. Moreover, one can easily show that many of,=2"2” for »=0,1,2, .. .[8]. It is a simple matter to verify
the completeness properties of the b&6)sare shared by the that the functions

new basig5).

1
;arcsm& )

A matrix representation oP can now be obtained, (18)

D. The matrix representation P,(X)=7n"(X)Ba,[ W(X)/Z]:—Tr ’—X(l—x) Bz,

1 _ - are eigenfunctions of the logistic map with the same spec-
(W)imJnZTJO dx WX) pim(X)(Péjn)(X), (14 trum as the tent map. In fact, ag (x) is the invariant den-

" sity of the logistic map for =4, our choice of basis is es-
by simply regrouping the indices SO thatMjimn=My. sentially gquivalent to a local quilibrium hypqthesi;, where
wherek=mN,+i andl =nN,+ ], for instance. Eigenvalues the _c_zleljsmes are equal to continuous functions t_lr_nes the

2 equilibrium density. A complete spectral decomposition can

and eigenfunctionéuch thatP,=z,¢,) can then be found also be obtained.

by truncatingM, at a sufficiently high ordefcorresponding
to m=n<N,, where typicallyN,<10) as for piecewise-

linear maps[14,15. In particular, the invariant density— B. The logistic map whenr <4
when unique—corresponds to the eigenvectanafvith unit We now come to the general case of parameter values of
eigenvalue. r belowr=4. To realize the nature of the problem, consider,

Let po(x) denote an initial density. In the correlation- for instancey =3.95, for which numerical simulations reveal
function formalism, Eq(2), the role of such an initial state is the existence of a chaotic attractor. For this value, no finite
played byB(x) pe(X). Then, minimal Markov partition can be found for at least the first
400 iterations of the extremum. However, one expects that

S & there are values arbitrarily close tor such that a finite
po(X)=§l mE:O Cin bim(X), (19 minimal Markov partition exists, that is, if the extremum

falls onto a periodic orbit after a certain number of iterates.

and For r=3.95, one finds that the itinerary of almost
repeats itself after 22 and 46 iterations, respectively.

. Ne  Np The corresponding values @f at which a finite Markov
Ploo¥)= 2 2 ¢im(OOV YiminCin.  (16)  partition exists are 3.950 000 101 121 850 5454 and

M=t mn=0 3.949 999 999 999 975 4036. Alternatively, for 3.95, one

can construct a partition with the firdt,+ 1 iterates of the
extremum and make an approximation of the typ® using

So far, we assumed that the iterates of the critical poinf finite basis éim(x)} [see Eq(5)]. One then seeks a value

form a finite set. More generally, the set is countably infinite,®f Nc @nd N,, such that one observes convergence in the
which would appear problematic. In fact, the relative magni-duantities of interest a¥l; andN, are increased. In this way,
tude of the singularities rapidly becomes negligible after sev\Ve have calculated the time-correlation functions, invariant
eral iterations. Thus the Frobenius-Perron operator can be

well approximated using only a finite number of singularities 0.36 . T
and by increasing this number to improve the approximation. I
In practice, spectra converge to stable values angsee Eq.

(3)] approaches its limiting value.

so that correlation functions such & can be easily evalu-
ated.

0.34

(]
lll. EXAMPLES E
=]
A. The logistic map whenr=4 é‘)
Our method of treating the singularities is equivalent to a 0.32 7

conjugacy only when two square-root type singularities can

appear in evolving probability densities of the syst@men

if the initial density is smooth as in the logistic map for

r=4. In this case the singularities only occur at zero and 0.30
one, so thany=0, a;=1, andN.=1. The conjugacy7] to

the tent mapg(y)=1—|2y—1| is established byg= 7 f

op~ 1 with

time

FIG. 1. Time-correlation functiokixX;)eq for the logistic map
Xi+1=rX{(1—x%;) obtained numerically for=3.95 (solid line)
and with the method described in this paper for3.95
(crossey r=3.950 000 101 121 850 5454 (circles, and

17 r=3.949 999 999 999 975 403@iamonds.

)— — n\/— )— 77’ )— ———
n(X arcsinyx S(X X .
( 7 ' ( ( T \/X(l_X)
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which is the spectral signature of an ergodic but nonmixing
dynamics[17]. Moreover, the rest of the spectrum turns out

to be separated from the unit circle by a gap that shrinks as
the nonchaotic regime is approached as

. ’é
-

L L N s T

o Ci Agap:Minv=2”+l,2”+2,...{l_|zv|}~(rn_rc)71

g 2 o _ In2

= : with 7= —=0.449808 ... . (19
o Iné

The universal exponent is determined by noting that the gap
is of the order of the average Lyapunov exponent, which is
known to scale as~|r —r|” [18]. We carried out a numeri-

08 10 cal verification of this prediction in the logistic map where
the spectrum has been calculated down to the merging of 64
chaotic bands, giving an exponeny,=0.44 in good agree-
ment with Eq.(19). This result shows that the spectrum of

FIG. 2. Spectra of eigenvalues of the Frobenius-Perron opef,e Eropenius-Perron operator displays universal behaviors
ator (numerically given by the eigenvalues of the mafri) asso- in the period-doubling cascade
ciated with the logistc map forr=3.95 (doty and ’

r=3.949 999 999 999 975 4038ircles.

magnitude

V. CONCLUDING REMARKS

densities, and spectra of the logistic map for the three men- In conclusion, the method developed in this paper consti-
tioned values of . As a check, we have also calculated thetutes a first step towards the statistical study of experimental
corresponding time-correlation functions through a long timesystems, most naturally modeled by nonhyperbolic chaotic
series. Figure 1 shows that the time-correlation functions ofittractors. Explicit applications to unimodal one-dimensional
the three systems are virtually indistinguishable. In contrastpmaps arising from the far-from-equilibrium Belousov-
the spectra show a sensitivity to parametric perturbations akhabotinskii chemical reactiofl9] and electrochemical os-
though they have qualitatively the same struct(see Fig. cillators[20] have been outlined. The method can be readily
2). extended to other maps with several critical points, which are
either quadratic or degenerate.

IV. UNIVERSALITY IN THE BAND-MERGING CASCADE
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