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Spectral properties of the evolution operator for probability densities are obtained for unimodal maps for
which all periodic orbits are unstable, and the Lyapunov exponent calculated from the first iterate of the critical
point converges to a positive constant. The method is applied to the logistic map both for parameter values at
which finite Markov partitions can be found as well as for more typical parameter values. A universal behavior
is found for the spectral gap in the period-doubling inverse cascade of chaotic band-merging bifurcations. Full
agreement with numerical simulation is obtained.@S1063-651X~96!07009-2#
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I. INTRODUCTION

The importance of the period-doubling route to chaos is
by now well established in such diverse fields as fluid dy-
namics, optics, chemistry, and biology@1–5#. In this context,
a most remarkable feature is that one-dimensional discrete
time dynamics governed by a unimodal mapping is often
observed when return maps are constructed from experimen-
tal time series pertaining to a single variable, or from math-
ematical models of multivariate continuous-time dynamical
systems@6#. As a result, many qualitative and even quantita-
tive features of wide classes of systems can be captured
through the analysis of simple dynamical systems, such as
the logistic map.

The properties of unimodal maps in the range in which
stable periodic orbits exist and no chaos is present is by now
a practically solved problem. On the other hand, the behavior
of such systems after the onset of chaos, where one observes
~with the exception of periodic windows! stochasticlike mo-
tion is less understood despite intense investigations. It is
widely recognized that in this range the most appropriate
method of description is the statistical one, based on the
evolution equation for probability densities known as the
Frobenius-Perron equation. The problem is thus reduced to
finding a workable representation of the probability density
in terms of the spectral properties of the corresponding
Frobenius-Perron operatorP̂. A number of results in this
direction have been reported essentially for hyperbolic maps
and, especially, for piecewise linear maps@4,7–9#. For such
systems, thez-function formalism has also been widely used
to obtain decay rates of time correlation functions. Much less
understood, both as far as the Frobenius-Perron operator and
the z-function formalism are concerned, is the behavior of
nonhyperbolic chaotic systems, which include the important
class of unimodal maps, and in particular the logistic map in
the chaotic regime. Our objective in the present paper is to
show that the statistical behavior of such systems, including
invariant densities, time-correlation functions, and decay
rates can be evaluated through an explicit matrix representa-

tion of the evolution operatorP̂.
The chief difficulty posed by the logistic map and several

other experimentally obtained first-return maps is due to the
existence of a quadratic extremum. The correspondingP̂,
when applied recursively on initially analytic functions, pro-
duces singularities at all the iterates of the extremum. A
method of treating these singularities is vital to any under-
standing of the statistical behavior of the system. Fortu-
nately, these singularities are integrable if the Lyapunov ex-
ponent, when evaluated from the first iterate of the
extremum, converges to a positive constant. The first objec-
tive of this paper is the creation of basis sets of orthogonal
functions capable of handling such singularities, as exposed
in Sec. II. This then permits one to obtain a matrix represen-
tationW of P̂, which, typically, can be truncated when all
periodic orbits are unstable. The eigenvectors and eigenval-
ues ofW define, through the basis, a class of eigenfunctions
and eigenvalues ofP̂. One can thus calculate time-
correlation functions, spectra, and invariant densities. In Sec.
III, the procedure will finally be illustrated on a few repre-
sentative examples. In Sec. IV, we obtain a universal for-
mula for the spectral gap as a function of the control param-
eter. This relation allows one to predict how quickly time
correlation functions decay to their asymptotic values as the
onset of chaos is approached from above.

II. MATRIX REPRESENTATION
OF THE FROBENIUS-PERRON OPERATOR

A. The Frobenius-Perron operator and correlation functions

Let us consider a one-dimensional dynamical system on
the unit interval,xt115 f (xt), an example of which is the
logistic map, f r(x)5rx(12x), wherein the control param-
eter r>0. As is well known, this example exhibits chaos at
values of r>r c53.56994 . . . . The corresponding
Frobenius-Perron operatorP̂ is defined through the equation
@10#

r t11~x!5 P̂r t~x!5(
a

r t@ f a
21~x!#

u f 8@ f a
21~x!#u

, ~1!

where f a
21(x) denotes the local inverse branches off . It is
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understood that iff a
21(x) is not defined for a pointx, which

happens when a given trajectory is not physically realizable,
then the corresponding term in the sum Eq.~1! is set equal to
zero at this point. The Frobenius-Perron operator is useful
not only in that it evolves probability densities, but also be-
cause it can be used to evaluate time-correlation functions,
provided that one knows the asymptotic state of the system
@typically the invariant densityreq(x)#. The time-correlation
function CAB(t) of two measurable functionsA(x) and
B(x) ~also referred to as observables! usually calculated
from a long time series data, can thus be alternatively given
in terms of@11#

CAB~t!5E
0

1

A~x!@ P̂t~Breq!#~x!dx2^A&eq̂ B&eq. ~2!

Clearly, a knowledge of the properties ofP̂ when acting on
functions of the typeB(x)req(x) is sufficient to calculate
time-correlation functions.

B. Formation of singularities in nonhyperbolic maps

Before proceeding to the study of the spectral properties
of the Frobenius-Perron operator, we first discuss the forma-
tion of singularities whenP̂ is applied successively on a
smooth initial probability densityr0(x). We suppose that the
map f (x) has a single quadratic critical pointxc , such that
f 8(xc)50, f 9(xc)Þ0 @with the notationf 8(x)5d f /dx#. For
the logistic map, the critical point is located atxc51/2.
Let us denote the iterates of the critical point
f (xc), f @ f (xc)#, . . . ,f

t11(xc), . . . by the set$xct%, with
t50,1,2,. . . , andconsider first the case where they are fi-
nite in number (Nc11). This happens when the critical point
falls in a finite number of iterations onto a periodic orbit. We
observe that the probability densityP̂tr0 develops an extra
new singularity at each iteration until the last point of the
periodic orbit is finally visited afterNc iterations. Because
the critical point is quadratic and provided that the relative
stability factor of the sequence, defined by

L5)
t50

Nc

u f 8~xct!u.1, ~3!

is greater than 1, we can conclude that all these singularities
are of square root type. More generally, the evolved prob-
ability density behaves as

P̂tr05 (
n50

`

an~ t !ux2xctu~n21!/2, ~4!

on one side or the other of the points$xct%.
For convenience, let us reorder the set$xct% according to

increasing values and denote the new set by$ai% i50
Nc . The set

can be used to partition the interval@a0 ,aNc# into Nc cells

Ci5@ai21 ,ai # with i51,2, . . . ,Nc . In the literature, this
partition is often referred to as the minimal Markov partition
@12#. To simplify the discussion without loss of generality,
we shall only consider the nontransient dynamics, which is
restricted to the interval@a0 ,aNc#.

C. The orthogonal basis

The method we propose uses a special basis of orthogonal
functions of the type

f im~x!5si~x!Tm@h i~x!#x i~x!, ~5!

where $Tn(z)%, n50,1,2, . . . is any basis of polynomial
functions~such as the Chebyshev polynomials, for example
@13#! with support on the unit interval and orthogonal with
respect to a weighting functionw(z),

E
0

1

dz w~z!Tm~z!Tn~z!5gmdmn . ~6!

x i(x) is the characteristic function of the cellCi ~i.e., equals
one if xPCi and zero otherwise!. The functionssi(x) are
chosen in such a way that the basis functions Eq.~5! have the
same type of square root singularities as the evolved prob-
ability densitites~4!. An example of such a function is given
by

si~x!5
1

pA~x2ai21!~ai2x!
, ~7!

where the factor (1/p) is adopted for normalization.
In our method, the functionsh i(x) in Eq. ~5! are related

to the functionssi(x) by the following argument. We assume
that the basis functions~5! also obey an orthogonality rela-
tion

E
0

1

dx w̃~x!f im~x!f jn~x!5gmdmnd i j , ~8!

with respect to another weighting factor,w̃(x)
5( i51

Nc w̃i(x)x i(x), than in Eq.~6!. Inserting the definition
~5! of the basis functions in Eq.~8!, we deduce the relation

E
ai21

ai
dx w̃i~x!@si~x!#2Tm@h i~x!#Tn@h i~x!#5gmdmn .

~9!

After the change of variablez5h i(x), we recover the previ-
ous orthogonality relation~6! under the conditions

h i~ai21!50, h i~ai !51, ~10!

si~x!5h i8~x!, ~11!

w̃i~x!5
w@h i~x!#

h i8~x!
~12!

for xPCi . We assumed here that the conditions~11! and
~12! are satisfied separately, which is specific to our method.
The conditions~10!–~12! allow us to determine the functions
h i(x). The particular choice~7! of si(x) yields

h i~x!5
2

p
arcsinA x2ai21

ai2ai21
, ~13!

which completes the construction of our basis. Since our
basis functions are tailored to the intrinsic square-root type
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singularities of the system, exhibited either by probability
densities or their derivatives@see Eq.~4!#, we obtain rapid
convergence. Moreover, one can easily show that many of
the completeness properties of the basis~6! are shared by the
new basis~5!.

D. The matrix representation

A matrix representation ofP̂ can now be obtained,

~W! im jn5
1

gm
E
0

1

dx w̃~x!f im~x!~ P̂f jn!~x!, ~14!

by simply regrouping the indices so that (W) im jn5Mkl ,
wherek5mNc1 i and l5nNc1 j , for instance. Eigenvalues
and eigenfunctions~such thatP̂cn5zncn) can then be found
by truncatingMkl at a sufficiently high order~corresponding
to m5n<Np , where typicallyNp<10) as for piecewise-
linear maps@14,15#. In particular, the invariant density—
when unique—corresponds to the eigenvector ofW with unit
eigenvalue.

Let r0(x) denote an initial density. In the correlation-
function formalism, Eq.~2!, the role of such an initial state is
played byB(x)req(x). Then,

r0~x!5(
i51

Nc

(
m50

Np

cinf im~x!, ~15!

and

P̂tr0~x!5 (
i , j51

Nc

(
m,n50

Np

f im~x!~W t! im jncjn , ~16!

so that correlation functions such as~2! can be easily evalu-
ated.

So far, we assumed that the iterates of the critical point
form a finite set. More generally, the set is countably infinite,
which would appear problematic. In fact, the relative magni-
tude of the singularities rapidly becomes negligible after sev-
eral iterations. Thus the Frobenius-Perron operator can be
well approximated using only a finite number of singularities
and by increasing this number to improve the approximation.
In practice, spectra converge to stable values onceL @see Eq.
~3!# approaches its limiting value.

III. EXAMPLES

A. The logistic map whenr54

Our method of treating the singularities is equivalent to a
conjugacy only when two square-root type singularities can
appear in evolving probability densities of the system~even
if the initial density is smooth!, as in the logistic map for
r54. In this case the singularities only occur at zero and
one, so thata050, a151, andNc51. The conjugacy@7# to
the tent mapg(y)512u2y21u is established byg5h+ f
+h21 with

h~x!5
2

p
arcsinAx, s~x!5h8~x!5

1

pAx~12x!
.

~17!

The Bernoulli polynomials$B2n(y/2)% @16# are eigenfunc-
tions of the tent map with corresponding eigenvalues
zn5222n for n50,1,2, . . . @8#. It is a simple matter to verify
that the functions

cn~x!5h8~x!B2n@h~x!/2#5
1

pAx~12x!
B2nS 1parcsinAxD

~18!

are eigenfunctions of the logistic map with the same spec-
trum as the tent map. In fact, ash8(x) is the invariant den-
sity of the logistic map forr54, our choice of basis is es-
sentially equivalent to a local equilibrium hypothesis, where
the densities are equal to continuous functions times the
equilibrium density. A complete spectral decomposition can
also be obtained.

B. The logistic map whenr<4

We now come to the general case of parameter values of
r below r54. To realize the nature of the problem, consider,
for instance,r53.95, for which numerical simulations reveal
the existence of a chaotic attractor. For this value, no finite
minimal Markov partition can be found for at least the first
400 iterations of the extremum. However, one expects that
there are valuesr̃ arbitrarily close tor such that a finite
minimal Markov partition exists, that is, if the extremum
falls onto a periodic orbit after a certain number of iterates.
For r53.95, one finds that the itinerary of12 almost
repeats itself after 22 and 46 iterations, respectively.
The corresponding values ofr̃ at which a finite Markov
partition exists are 3.950 000 101 121 850 5454 and
3.949 999 999 999 975 4036. Alternatively, forr53.95, one
can construct a partition with the firstNc11 iterates of the
extremum and make an approximation of the type~16! using
a finite basis$f im(x)% @see Eq.~5!#. One then seeks a value
of Nc and Np such that one observes convergence in the
quantities of interest asNc andNp are increased. In this way,
we have calculated the time-correlation functions, invariant

FIG. 1. Time-correlation function̂x0xt&eq for the logistic map
xt115rxt(12xt) obtained numerically forr53.95 ~solid line!
and with the method described in this paper forr53.95
~crosses!, r53.950 000 101 121 850 5454 ~circles!, and
r53.949 999 999 999 975 4036~diamonds!.
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densities, and spectra of the logistic map for the three men-
tioned values ofr . As a check, we have also calculated the
corresponding time-correlation functions through a long time
series. Figure 1 shows that the time-correlation functions of
the three systems are virtually indistinguishable. In contrast,
the spectra show a sensitivity to parametric perturbations al-
though they have qualitatively the same structure~see Fig.
2!.

IV. UNIVERSALITY IN THE BAND-MERGING CASCADE

The method also allows one to study the spectral proper-
ties of the Frobenius-Perron operator in the inverse cascade
of band-merging bifurcations$r n% accumulating from above
at the onset of chaos as (r n2r c);d2n, where
d54.6692 . . . is theFeigenbaum constant@4,5#. As a first
result, the number of eigenvalues on the unit circle is equal
to 2n when 2n bands merge, leading to period-2n chaos,

which is the spectral signature of an ergodic but nonmixing
dynamics@17#. Moreover, the rest of the spectrum turns out
to be separated from the unit circle by a gap that shrinks as
the nonchaotic regime is approached as

Dgap5Minn52n11,2n12, . . .$12uznu%;~r n2r c!
t,

with t5
ln2

lnd
50.449 8069 . . . . ~19!

The universal exponent is determined by noting that the gap
is of the order of the average Lyapunov exponent, which is
known to scale asl̄;ur2r cut @18#. We carried out a numeri-
cal verification of this prediction in the logistic map where
the spectrum has been calculated down to the merging of 64
chaotic bands, giving an exponenttnum.0.44 in good agree-
ment with Eq.~19!. This result shows that the spectrum of
the Frobenius-Perron operator displays universal behaviors
in the period-doubling cascade.

V. CONCLUDING REMARKS

In conclusion, the method developed in this paper consti-
tutes a first step towards the statistical study of experimental
systems, most naturally modeled by nonhyperbolic chaotic
attractors. Explicit applications to unimodal one-dimensional
maps arising from the far-from-equilibrium Belousov-
Zhabotinskii chemical reaction@19# and electrochemical os-
cillators @20# have been outlined. The method can be readily
extended to other maps with several critical points, which are
either quadratic or degenerate.
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